Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons.
نویسندگان
چکیده
The perirhinal cortex plays a critical role in recognition and associative memory. However, the network properties that support perirhinal contributions to memory are unclear. To shed light on this question, we compared the synaptic articulation of short- and long-range inputs from the perirhinal cortex or temporal neocortex with perirhinal neurons in rats. Iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) were performed at different rostrocaudal levels of the ventral temporal neocortex or perirhinal cortex, and electron microscopic observations of anterogradely labeled (PHAL(+)) axon terminals found at perirhinal sites adjacent to or rostrocaudally distant from the injection sites were performed. After neocortical injections, the density of PHAL(+) axons in the perirhinal cortex decreased steeply with rostrocaudal distance from the injection sites, much more so than following perirhinal injections. Otherwise, similar results were obtained with neocortical and perirhinal injections. In both cases, most (76-86%) PHAL(+) axon terminals formed asymmetric synapses, typically with spines (type A, 83-89%) and less frequently with dendritic profiles (type B, 11-17%). The remaining terminals formed symmetric synapses with dendritic profiles (type C, 14-23%). Type B and C synapses were 2.4-2.6 times more frequent in short- than long-range connections. The postsynaptic elements in type A-C synapses were identified with immunocytochemistry for CAMKIIα, a marker of glutamatergic cortical neurons. Type A and C terminals contacted CAMKIIα-positive principal cells, whereas type B synapses contacted presumed inhibitory neurons. Overall, these results suggest that principal perirhinal neurons are subjected to significantly more inhibition from short- than from long-range cortical inputs, an organization that likely impacts perirhinal contributions to memory.
منابع مشابه
Muscarinic control of long-range GABAergic inhibition within the rhinal cortices.
The perirhinal cortex plays a critical role in memory formation, in part because it forms reciprocal connections with the neocortex and entorhinal cortex and is thus in a position to integrate and transfer higher-order information to and from the hippocampus. However, for reasons that remain unclear, perirhinal transfer of neocortical inputs to the entorhinal cortex occurs with a low probabilit...
متن کاملIntrinsic vs. Extrinsic Motivation in an Interactive Engineering Game
In this paper, we study intrinsic vs. extrinsic motivation in players playing an electrical engineering gaming environment. We used UNTANGLED, a highly interactive game to conduct this study. This game is developed to solve complex mapping problem from electrical engineering using human intuitions. Our goal is to find whether there are differences in the ways anonymous players solved electrical...
متن کاملThalamocortical Up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity.
During behavioral quiescence, the neocortex generates spontaneous slow oscillations that consist of Up and Down states. Up states are short epochs of persistent activity that resemble the activated neocortex during arousal and cognition. Although Up states are generated within the cortex, the impact of extrinsic (thalamocortical) and intrinsic (intracortical) inputs on the persistent activity i...
متن کاملIntracortical mechanisms for the recruitment of motor cortex neurons.
Neurons project out of motor cortex to the spinal cord and to other targets. Not all projection neurons recruit in the same way during behavior, but instead recruitment patterns depend on the projection target of the neurons. The problem is to understand how neurons projecting to different targets are recruited selectively. We have investigated possible mechanisms for the recruitment of motor c...
متن کاملPerirhinal and parahippocampal cortices of the macaque monkey: cortical afferents.
Neuropsychological studies have recently demonstrated that the macaque monkey perirhinal (areas 35 and 36) and parahippocampal (areas TH and TF) cortices contribute importantly to normal memory function. Unfortunately, neuroanatomical information concerning the cytoarchitectonic organization and extrinsic connectivity of these cortical regions is meager. We investigated the organization of cort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 521 11 شماره
صفحات -
تاریخ انتشار 2013